19,571 research outputs found

    Kernel conditional quantile estimation via reduction revisited

    Get PDF
    Quantile regression refers to the process of estimating the quantiles of a conditional distribution and has many important applications within econometrics and data mining, among other domains. In this paper, we show how to estimate these conditional quantile functions within a Bayes risk minimization framework using a Gaussian process prior. The resulting non-parametric probabilistic model is easy to implement and allows non-crossing quantile functions to be enforced. Moreover, it can directly be used in combination with tools and extensions of standard Gaussian Processes such as principled hyperparameter estimation, sparsification, and quantile regression with input-dependent noise rates. No existing approach enjoys all of these desirable properties. Experiments on benchmark datasets show that our method is competitive with state-of-the-art approaches.

    Brown dwarfs in the Hyades and beyond?

    Full text link
    We have used both the Low-Resolution Imaging Spectrograph and the HIRES echelle spectrograph on the Keck telescopes to obtain spectra of twelve candidate members of the Hyades cluster identified by Leggett and Hawkins (1988, 1989). All of the objects are chromospherically-active, late-type M-dwarfs, with Hα\alpha equivalent widths varying from 1 to 30\AA. Based on our measured radial velocities, the level of stellar activity and other spectroscopic features, only one of the twelve stars has properties consistent with cluster membership. We consider how this result affects estimates of the luminosity and mass function of the Hyades cluster. Five of the eleven field stars have weak K I 7665/7699\AA and CaH absorption as compared with M-dwarf standards of the same spectral type, suggesting a lower surface gravity. Two of these sources, LH0416+14 and LH0419+15, exhibit significant lithium 6708 \AA absorption. Based partly on parallax measurements by the US Naval Observatory (Harris et al, 1998), we identify all five as likely to be young, pre-main sequence objects in or near the Taurus-Auriga association at distances of between 150 and 250 parsecs. A comparison with theoretical models of pre-main sequence stars indicates masses of less than 0.05 M⊙_\odot.Comment: to appear in AJ, January 1999; 34 pages, (Latex format), including 10 embedded postscript figures and two table

    The distance to a star forming region in the Outer arm of the Galaxy

    Full text link
    We performed astrometric observations with the VLBA of WB89-437, an H2O maser source in the Outer spiral arm of the Galaxy. We measure an annual parallax of 0.167 +/- 0.006 mas, corresponding to a heliocentric distance of 6.0 +/- 0.2 kpc or a Galactocentric distance of 13.4 +/- 0.2 kpc. This value for the heliocentric distance is considerably smaller than the kinematic distance of 8.6 kpc. This confirms the presence of a faint Outer arm toward l = 135 degrees. We also measured the full space motion of the object and find a large peculiar motion of ~20 km/s toward the Galactic center. This peculiar motion explains the large error in the kinematic distance estimate. We also find that WB89-437 has the same rotation speed as the LSR, providing more evidence for a flat rotation curve and thus the presence of dark matter in the outer Galaxy.Comment: The Astrophysical Journal, accepted, 16 pages, 4 Figure

    5-micron photometry of late-type dwarfs

    Get PDF
    We present narrowband-M photometry of nine low-mass dwarfs with spectral types ranging from M2.5 to L0.5. Combining the (L'-M') colours derived from our observations with data from the literature, we find colours consistent with a Rayleigh-Jeans flux distribution for spectral types earlier than M5, but enhanced F_3.8/F_4.7 flux ratios (negative (L'-M') colours) at later spectral types. This probably reflects increased absorption at M' due to the CO fundamental band. We compare our results against recent model predictions and briefly discuss the implications.Comment: accepted for the Astronomical Journa

    An empirical analysis of smart contracts: platforms, applications, and design patterns

    Full text link
    Smart contracts are computer programs that can be consistently executed by a network of mutually distrusting nodes, without the arbitration of a trusted authority. Because of their resilience to tampering, smart contracts are appealing in many scenarios, especially in those which require transfers of money to respect certain agreed rules (like in financial services and in games). Over the last few years many platforms for smart contracts have been proposed, and some of them have been actually implemented and used. We study how the notion of smart contract is interpreted in some of these platforms. Focussing on the two most widespread ones, Bitcoin and Ethereum, we quantify the usage of smart contracts in relation to their application domain. We also analyse the most common programming patterns in Ethereum, where the source code of smart contracts is available.Comment: WTSC 201

    Multi-Wavelength Study of Sgr A*: The Short Time Scale Variability

    Full text link
    To understand the correlation and the radiation mechanism of flare emission in different wavelength bands, we have coordinated a number of telescopes to observe SgrA* simultaneously. We focus only on one aspect of the preliminary results of our multi-wavelength observing campaigns, namely, the short time scale variability of emission from SgrA* in near-IR, X-ray and radio wavelengths. The structure function analysis indicate most of the power spectral density is detected on hourly time scales in all wavelength bands. We also report minute time scale variability at 7 and 13mm placing a strong constraint on the nature of the variable emission. The hourly time scale variability can be explained in the context of a model in which the peak frequency of emission shifts toward lower frequencies as a self-absorbed synchrotron source expands adiabatically near the acceleration site. The short time scale variability, on the other hand, places a strong constraint on the size of the emitting region. Assuming that rapid minute time scale fluctuations of the emission is optically thick in radio wavelength, light travel arguments requires relativistic particle energy, thus suggesting the presence of outflow from SgrA*.Comment: 9 pages, 4 figures, The Galactic Center: A Window on the Nuclear Environment of Disk Galaxies ASP Conference Series, 2010 eds: M. Morris, D. Q. Wang and F. Yua

    Constraining the History of the Sagittarius Dwarf Galaxy Using Observations of its Tidal Debris

    Get PDF
    We present a comparison of semi-analytic models of the phase-space structure of tidal debris with observations of stars associated with the Sagittarius dwarf galaxy (Sgr). We find that many features in the data can be explained by these models. The properties of stars 10-15 degrees away from the center of Sgr --- in particular, the orientation of material perpendicular to Sgr's orbit (c.f. Alard 1996) and the kink in the velocity gradient (Ibata et al 1997) --- are consistent with those expected for unbound material stripped during the most recent pericentric passage ~50 Myrs ago. The break in the slope of the surface density seen by Mateo, Olszewski & Morrison (1998) at ~ b=-35 can be understood as marking the end of this material. However, the detections beyond this point are unlikely to represent debris in a trailing streamer, torn from Sgr during the immediately preceding passage ~0.7 Gyrs ago, but are more plausibly explained by a leading streamer of material that was lost more that 1 Gyr ago and has wrapped all the way around the Galaxy. The observations reported in Majewski et al (1999) also support this hypothesis. We determine debris models with these properties on orbits that are consistent with the currently known positions and velocities of Sgr in Galactic potentials with halo components that have circular velocities v_circ=140-200 km/s. The best match to the data is obtained in models where Sgr currently has a mass of ~10^9 M_sun and has orbited the Galaxy for at least the last 1 Gyr, during which time it has reduced its mass by a factor of 2-3, or luminosity by an amount equivalent to ~10% of the total luminosity of the Galactic halo. These numbers suggest that Sgr is rapidly disrupting and unlikely to survive beyond a few more pericentric passages.Comment: 19 pages, 5 figures, accepted to Astronomical Journa
    • …
    corecore